Stig Östlund

onsdag, september 26, 2018

Giving Malaria a Deadline

With a new genetic tool, scientists move a step closer to eradicating mosquitoes and the deadly diseases they carry.




A false-color scanning electron micrograph of an Anopheles gambiae mosquito. By using a method called a gene drive, researchers believe they can eliminate a population of disease-carrying mosquitoes within a dozen generations


 Nicholas Wade Sept 24


Malaria is among the world’s worst scourges. In 2016 the disease, which is caused by a parasite and transmitted by mosquitoes, infected 194 million people in Africa and caused 445,000 deaths.
But biologists now have developed a way of manipulating mosquito genetics that forces whole populations of the insect to self-destruct. The technique has proved so successful in laboratory tests that its authors envisage malaria could be eliminated from large regions of Africa within two decades.
A team led by Andrea Crisanti, a biologist at Imperial College, London, altered a gene that disrupts the mosquito’s sexual development; the females become infertile but the males remain able to spread the debilitating gene to an ever-dwindling number of progeny. Dr. Crisanti found that laboratory populations of mosquitoes can be driven to extinction within 11 generations, he and colleagues report in Monday’s issue of Nature Biotechnology. Wild populations could be made to crash in about four years, according to computer models.

The technique involves equipping mosquitoes with a gene drive, a genetic mechanism that forces a gene of choice into all of an organism’s offspring. (Normally, sexual reproduction would pass the gene to only half the progeny.) Genes carried by a gene drive therefore can spread very rapidly through a population, which makes the technique both powerful and potentially dangerous. No gene drive has yet been released in the wild.


More in  
NEW YORK TIMES

Bloggarkiv