Stig Östlund

måndag, juli 31, 2017

JCI - Increased salt consumption induces body water conservation and decreases fluid intake



Click -->  JCI - Increased salt consumption induces body water conservation and decreases fluid intake




För fackfolk och mycket belästa (andra) personer. 
Vi andra nöjer oss med NYT:s "resume": 



Why Everything We Know About Salt May Be Wrong

By GINA KOLATAMAY 8, 2017

The salt equation taught to doctors for more than 200 years is not hard to understand.

The body relies on this essential mineral for a variety of functions, including blood pressure and the transmission of nerve impulses. Sodium levels in the blood must be carefully maintained.

If you eat a lot of salt — sodium chloride — you will become thirsty and drink water, diluting your blood enough to maintain the proper concentration of sodium. Ultimately you will excrete much of the excess salt and water in urine.

The theory is intuitive and simple. And it may be completely wrong.

New studies of Russian cosmonauts, held in isolation to simulate space travel, show that eating more salt made them less thirsty but somehow hungrier. Subsequent experiments found that mice burned more calories when they got more salt, eating 25 percent more just to maintain their weight.

The research, published recently in two dense papers in The Journal of Clinical Investigation, contradicts much of the conventional wisdom about how the body handles salt and suggests that high levels may play a role in weight loss.

The findings have stunned kidney specialists.

“This is just very novel and fascinating,” said Dr. Melanie Hoenig, an assistant professor of medicine at Harvard Medical School. “The work was meticulously done.”
“This is just very novel and fascinating,” said Dr. Melanie Hoenig, an assistant professor of medicine at Harvard Medical School. “The work was meticulously done.”


Dr. James R. Johnston, a professor at the University of Pittsburgh, marked each unexpected finding in the margins of the two papers. The studies were covered with scribbles by the time he was done.
“Really cool,” he said, although he added that the findings need to be replicated.
The new studies are the culmination of a decades-long quest by a determined scientist, Dr. Jens Titze, now a kidney specialist at Vanderbilt University Medical Center and the Interdisciplinary Center for Clinical Research in Erlangen, Germany.
In 1991, as a medical student in Berlin, he took a class on human physiology in extreme environments. The professor who taught the course worked with the European space program and presented data from a simulated 28-day mission in which a crew lived in a small capsule.
The main goal was to learn how the crew members would get along. But the scientists also had collected the astronauts’ urine and other physiological markers.
Dr. Titze noticed something puzzling in the crew members’ data: Their urine volumes went up and down in a seven-day cycle. That contradicted all he’d been taught in medical school: There should be no such temporal cycle.
In 1994, the Russian space program decided to do a 135-day simulation of life on the Mir space station. Dr. Titze arranged to go to Russia to study urine patterns among the crew members and how these were affected by salt in the diet.
A striking finding emerged: a 28-day rhythm in the amount of sodium the cosmonauts’ bodies retained that was not linked to the amount of urine they produced. And the sodium rhythms were much more pronounced than the urine patterns.
The sodium levels should have been rising and falling with the volume of urine. Although the study wasn’t perfect — the crew members’ sodium intake was not precisely calibrated — Dr. Titze was convinced something other than fluid intake was influencing sodium stores in the crew’s bodies.
The conclusion, he realized, “was heresy.”
In 2006, the Russian space program announced two more simulation studies, one lasting 105 days and the other 520 days. Dr. Titze saw a chance to figure out whether his anomalous findings were real.
In the shorter simulation, the cosmonauts ate a diet containing 12 grams of salt daily, followed by nine grams daily, and then a low-salt diet of six grams daily, each for a 28-day period. In the longer mission, the cosmonauts also ate an additional cycle of 12 grams of salt daily.
Like most of us, the cosmonauts liked their salt. Oliver Knickel, 33, a German citizen participating in the program who is now an automotive engineer in Stuttgart, recalled that even the food that supplied 12 grams a day was not salty enough for him.
When the salt level got down to six grams, he said, “It didn’t taste good.”
The real shocker came when Dr. Titze measured the amount of sodium excreted in the crew’s urine, the volume of their urine, and the amount of sodium in their blood.


The mysterious patterns in urine volume persisted, but everything seemed to proceed according to the textbooks. When the crew ate more salt, they excreted more salt; the amount of sodium in their blood remained constant, and their urine volume increased.

“But then we had a look at fluid intake, and were more than surprised,” he said.
Instead of drinking more, the crew were drinking less in the long run when getting more salt. So where was the excreted water coming from?
“There was only one way to explain this phenomenon,” Dr. Titze said. “The body most likely had generated or produced water when salt intake was high.”


Another puzzle: The crew complained 
that they were always hungry on the 
high-salt 
diet. Dr. Titze assured them that they were
 getting exactly enough food to maintain 
their weights, and were eating the same 
amount on the lower-salt diets, when hunger 
did not seem to be problem.
But urine tests suggested another 
explanation. 
The crew members were increasing 
production
 of glucocorticoid hormones, which influence 
metabolism and immune function.
To get further insight, Dr. Titze began a 
study of mice in the laboratory. Sure enough, the 
more salt he added to the animals’ diet, the 
less water they drank. And he saw why.
The animals were getting water — but not by drinking it. The increased levels of
 glucocorticoid hormones broke down fat
 and muscle in their own bodies. This freed 
up water for the body to use.
But that process requires energy, Dr. Titze
 also found, which is why the mice ate 25 
percent more food on a high-salt diet. 
The hormones also may be a cause of the 
strange
 long-term fluctuations in urine volume.
Scientists knew that a starving body will 
burn its own fat and muscle for sustenance.
 But the realization that something similar happens
 on a salty diet has come as a revelation.
People do what camels do, noted Dr. Mark 
Zeidel, a nephrologist at Harvard Medical
 School who wrote an editorial 
accompanying Dr. Titze’s studies. 
A camel traveling through the desert that 
has 
no water to drink gets water instead by 
breaking down the fat in its hump.
One of the many implications of this 
finding
 is that salt may be involved in weight
 loss. Generally, scientists have assumed 
that a 
high-salt diet encourages a greater 
intake 
of fluids, which increases weight.
But if balancing a higher salt intake 
requires
 the body to break down tissue, it may also increase energy expenditure.
Still, Dr. Titze said he would not 
advise 
eating a lot of salt to lose weight. If his 
results are correct, more salt will make you hungrier in
 the long run, so you would have to be sure 
you did not eat more food to make up for the
 extra calories burned.
And, Dr. Titze said, high glucocorticoid 
levels are linked to such conditions as osteoporosis, muscle loss, Type 2 diabetes
 and other metabolic problems.
But what about liquids? Everyone 
knows that salty foods make you thirsty. 
How could it be that 
a high-salt diet made the cosmonauts less
 thirsty?
In reality, said Dr. Zeidel, people and 
animals get thirsty because salt-detecting
 neurons in the mouth stimulate an urge 
to drink. This kind
 of “thirst” may have nothing to do with the
 body’s actual need for water.
These findings have opened up an array 
of puzzling questions, experts said.
“The work suggests that we really do
 not understand the effect of sodium chloride
 on
 the body,” said Dr. Hoenig.
“These effects may be far more complex 
and
 far-reaching than the relatively simple 
laws
 that dictate movement of fluid, 
based on pressures and particles.”
She and others have not abandoned
 their conviction that high-salt diets
 can raise
 blood pressure in some people.



But now, Dr. Hoenig said, “I suspect 
that 
when it comes to the adverse effects of 
high sodium intake, we are right for all the
 wrong reasons.”

Bloggarkiv